Holomorphic function

Among other things...

A function $f$ which satisfies the Cauchy-Riemann conditions:

$$ \begin{array}{c} u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \\ u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) \end{array} $$

where $f(z)=(u(z),v(z))$.

A function satisfies Cauchy-Riemann equations if and only if its Polya vector field has null divergence and null rotational.

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: